Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Cell Death Differ ; 31(3): 335-347, 2024 03.
Article in English | MEDLINE | ID: mdl-38396150

ABSTRACT

During apoptosis mediated by the intrinsic pathway, BAX/BAK triggers mitochondrial permeabilization and the release of cytochrome-c, followed by a dramatic remodelling of the mitochondrial network that results in mitochondrial herniation and the subsequent release of pro-inflammatory mitochondrial components. Here, we show that mitochondrial herniation and subsequent exposure of the inner mitochondrial membrane (IMM) to the cytoplasm, initiates a unique form of mitophagy to deliver these damaged organelles to lysosomes. IMM-induced mitophagy occurs independently of canonical PINK1/Parkin signalling and is driven by ubiquitination of the IMM. Our data suggest IMM-induced mitophagy is an additional safety mechanism that cells can deploy to contain damaged mitochondria. It may have particular relevance in situations where caspase activation is incomplete or inhibited, and in contexts where PINK1/Parkin-mitophagy is impaired or overwhelmed.


Subject(s)
Mitophagy , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Mitochondrial Membranes/metabolism , Protein Kinases/metabolism
3.
Commun Biol ; 7(1): 209, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378743

ABSTRACT

Autophagy-related genes have been closely associated with intestinal homeostasis. BECLIN1 is a component of Class III phosphatidylinositol 3-kinase complexes that orchestrate autophagy initiation and endocytic trafficking. Here we show intestinal epithelium-specific BECLIN1 deletion in adult mice leads to rapid fatal enteritis with compromised gut barrier integrity, highlighting its intrinsic critical role in gut maintenance. BECLIN1-deficient intestinal epithelial cells exhibit extensive apoptosis, impaired autophagy, and stressed endoplasmic reticulum and mitochondria. Remaining absorptive enterocytes and secretory cells display morphological abnormalities. Deletion of the autophagy regulator, ATG7, fails to elicit similar effects, suggesting additional novel autophagy-independent functions of BECLIN1 distinct from ATG7. Indeed, organoids derived from BECLIN1 KO mice show E-CADHERIN mislocalisation associated with abnormalities in the endocytic trafficking pathway. This provides a mechanism linking endocytic trafficking mediated by BECLIN1 and loss of intestinal barrier integrity. Our findings establish an indispensable role of BECLIN1 in maintaining mammalian intestinal homeostasis and uncover its involvement in endocytic trafficking in this process. Hence, this study has important implications for our understanding of intestinal pathophysiology.


Subject(s)
Apoptosis , Epithelial Cells , Mice , Animals , Beclin-1/genetics , Beclin-1/metabolism , Apoptosis/genetics , Epithelial Cells/metabolism , Autophagy/genetics , Homeostasis , Mammals
4.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-37957015

ABSTRACT

Deregulation of the Hippo pathway is a driver for cancer progression and treatment resistance. In the context of gastric cancer, YAP1 is a biomarker for poor patient prognosis. Although genomic tumor profiling provides information of Hippo pathway activation, the present study demonstrates that inhibition of Yap1 activity has anti-tumor effects in gastric tumors driven by oncogenic mutations and inflammatory cytokines. We show that Yap1 is a key regulator of cell metabolism, proliferation, and immune responses in normal and neoplastic gastric epithelium. We propose that the Hippo pathway is targetable across gastric cancer subtypes and its therapeutic benefits are likely to be mediated by both cancer cell-intrinsic and -extrinsic mechanisms.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Microenvironment , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Hippo Signaling Pathway , STAT3 Transcription Factor/metabolism
5.
Cell Rep ; 42(11): 113312, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37889747

ABSTRACT

Platelets are anucleate blood cells that contain mitochondria and regulate blood clotting in response to injury. Mitochondria contain their own gene expression machinery that relies on nuclear-encoded factors for the biogenesis of the oxidative phosphorylation system to produce energy required for thrombosis. The autonomy of the mitochondrial gene expression machinery from the nucleus is unclear, and platelets provide a valuable model to understand its importance in anucleate cells. Here, we conditionally delete Elac2, Ptcd1, or Mtif3 in platelets, which are essential for mitochondrial gene expression at the level of RNA processing, stability, or translation, respectively. Loss of ELAC2, PTCD1, or MTIF3 leads to increased megakaryocyte ploidy, elevated circulating levels of reticulated platelets, thrombocytopenia, and consequent extended bleeding time. Impaired mitochondrial gene expression reduces agonist-induced platelet activation. Transcriptomic and proteomic analyses show that mitochondrial gene expression is required for fibrinolysis, hemostasis, and blood coagulation in response to injury.


Subject(s)
Genes, Mitochondrial , Thrombosis , Humans , Proteomics , Hemostasis/physiology , Blood Coagulation , Blood Platelets/metabolism , Megakaryocytes/metabolism , Gene Expression , Mitochondrial Proteins/metabolism
6.
Nat Commun ; 14(1): 5666, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723181

ABSTRACT

TANK-binding kinase 1 (TBK1) is a key signalling component in the production of type-I interferons, which have essential antiviral activities, including against SARS-CoV-2. TBK1, and its homologue IκB kinase-ε (IKKε), can also induce pro-inflammatory responses that contribute to pathogen clearance. While initially protective, sustained engagement of type-I interferons is associated with damaging hyper-inflammation found in severe COVID-19 patients. The contribution of TBK1/IKKε signalling to these responses is unknown. Here we find that the small molecule idronoxil inhibits TBK1/IKKε signalling through destabilisation of TBK1/IKKε protein complexes. Treatment with idronoxil, or the small molecule inhibitor MRT67307, suppresses TBK1/IKKε signalling and attenuates cellular and molecular lung inflammation in SARS-CoV-2-challenged mice. Our findings additionally demonstrate that engagement of STING is not the major driver of these inflammatory responses and establish a critical role for TBK1/IKKε signalling in SARS-CoV-2 hyper-inflammation.


Subject(s)
COVID-19 , Interferon Type I , Animals , Mice , I-kappa B Kinase , Disease Models, Animal , SARS-CoV-2 , Inflammation
7.
EMBO J ; 42(12): e112712, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37139896

ABSTRACT

cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.


Subject(s)
Immunity, Innate , Membrane Proteins , Mice , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction/physiology , Macrophages/metabolism , Nucleotidyltransferases/metabolism , DNA , Endosomal Sorting Complexes Required for Transport/genetics
8.
Nat Commun ; 14(1): 2099, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055407

ABSTRACT

Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation. Using a mouse knockout model (Pf4-Srsf3Δ/Δ) with normal MK numbers, but essentially devoid of LCM, we demonstrate a pronounced increase in BM HSC concurrent with endogenous mobilization and extramedullary hematopoiesis. Severe thrombocytopenia is observed in animals with diminished LCM, although there is no change in MK ploidy distribution, uncoupling endoreduplication and platelet production. When HSC isolated from a microenvironment essentially devoid of LCM reconstitute hematopoiesis in lethally irradiated mice, the absence of LCM increases HSC in BM, blood and spleen, and the recapitulation of thrombocytopenia. In contrast, following a competitive transplant using minimal numbers of WT HSC together with HSC from a microenvironment with diminished LCM, sufficient WT HSC-generated LCM regulates a normal HSC pool and prevents thrombocytopenia. Importantly, LCM are conserved in humans.


Subject(s)
Megakaryocytes , Thrombocytopenia , Humans , Animals , Megakaryocytes/metabolism , Hematopoietic Stem Cells/metabolism , Blood Platelets , Thrombopoiesis/genetics , Hematopoiesis/genetics , Thrombocytopenia/metabolism , Disease Models, Animal , Ploidies , Serine-Arginine Splicing Factors/metabolism
9.
Cancer Discov ; 12(6): 1560-1579, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35311997

ABSTRACT

Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE: We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.


Subject(s)
Leukemia, Myeloid, Acute , Cell Differentiation , Dendritic Cells , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Panobinostat/pharmacology
10.
Front Immunol ; 13: 794776, 2022.
Article in English | MEDLINE | ID: mdl-35281062

ABSTRACT

Stimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) via the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials. We therefore questioned whether a difference in human DC responses could be critical to the lack of STING agonist efficacy in human settings. This study sought to directly compare mouse and human plasmacytoid DCs and conventional DC subset responses upon STING activation. We found all mouse and human DC subsets were potently activated by STING stimulation. As expected, Type I IFNs were produced by both mouse and human plasmacytoid DCs. However, mouse and human plasmacytoid and conventional DCs all produced type III IFNs (i.e., IFN-λs) in response to STING activation. Of particular interest, all human DCs produced large amounts of IFN-λ1, not expressed in the mouse genome. Furthermore, we also found differential cell death responses upon STING activation, observing rapid ablation of mouse, but not human, plasmacytoid DCs. STING-induced cell death in murine plasmacytoid DCs occurred in a cell-intrinsic manner and involved intrinsic apoptosis. These data highlight discordance between STING IFN and cell death responses in mouse and human DCs and caution against extrapolating STING-mediated events in mouse models to equivalent human outcomes.


Subject(s)
Interferon Type I , Animals , Cell Death , Cytosol/metabolism , Dendritic Cells/metabolism , Humans , Interferon Type I/metabolism , Membrane Proteins , Mice , Signal Transduction
11.
Sci Immunol ; 7(68): eabi6763, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148201

ABSTRACT

Proteasome dysfunction can lead to autoinflammatory disease associated with elevated type I interferon (IFN-αß) and NF-κB signaling; however, the innate immune pathway driving this is currently unknown. Here, we identified protein kinase R (PKR) as an innate immune sensor for proteotoxic stress. PKR activation was observed in cellular models of decreased proteasome function and in multiple cell types from patients with proteasome-associated autoinflammatory disease (PRAAS). Furthermore, genetic deletion or small-molecule inhibition of PKR in vitro ameliorated inflammation driven by proteasome deficiency. In vivo, proteasome inhibitor-induced inflammatory gene transcription was blunted in PKR-deficient mice compared with littermate controls. PKR also acted as a rheostat for proteotoxic stress by triggering phosphorylation of eIF2α, which can prevent the translation of new proteins to restore homeostasis. Although traditionally known as a sensor of RNA, under conditions of proteasome dysfunction, PKR sensed the cytoplasmic accumulation of a known interactor, interleukin-24 (IL-24). When misfolded IL-24 egress into the cytosol was blocked by inhibition of the endoplasmic reticulum-associated degradation pathway, PKR activation and subsequent inflammatory signaling were blunted. Cytokines such as IL-24 are normally secreted from cells; therefore, cytoplasmic accumulation of IL-24 represents an internal danger-associated molecular pattern. Thus, we have identified a mechanism by which proteotoxic stress is detected, causing inflammation observed in the disease PRAAS.


Subject(s)
Immunity, Innate/immunology , Interleukins/immunology , eIF-2 Kinase/immunology , Animals , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , eIF-2 Kinase/deficiency
12.
Nat Commun ; 12(1): 6546, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764270

ABSTRACT

Acute myeloid leukemia (AML) is a malignancy of immature progenitor cells. AML differentiation therapies trigger leukemia maturation and can induce remission, but relapse is prevalent and its cellular origin is unclear. Here we describe high resolution analysis of differentiation therapy response and relapse in a mouse AML model. Triggering leukemia differentiation in this model invariably produces two phenotypically distinct mature myeloid lineages in vivo. Leukemia-derived neutrophils dominate the initial wave of leukemia differentiation but clear rapidly and do not contribute to residual disease. In contrast, a therapy-induced population of mature AML-derived eosinophil-like cells persists during remission, often in extramedullary organs. Using genetic approaches we show that restricting therapy-induced leukemia maturation to the short-lived neutrophil lineage markedly reduces relapse rates and can yield cure. These results indicate that relapse can originate from therapy-resistant mature AML cells, and suggest differentiation therapy combined with targeted eradication of mature leukemia-derived lineages may improve disease outcome.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Neoplasm, Residual/metabolism , Cell Differentiation , Humans , Leukemia, Myeloid, Acute/genetics , Neoplasm, Residual/genetics
13.
Cell Rep ; 36(3): 109430, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34289356

ABSTRACT

While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-κB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.


Subject(s)
Apoptosis , B-Lymphocytes/pathology , Homeostasis , Animals , Antibody Formation/immunology , Atrophy , B-Cell Activating Factor/metabolism , Cell Count , Cell Differentiation/genetics , Cell Proliferation/genetics , Cell Size , Cell Survival/genetics , Cellular Senescence/genetics , Gene Deletion , Gene Expression Regulation , Mice, Knockout , Sequence Analysis, RNA , Thymus Gland/immunology , Transcription Factors/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
15.
Curr Protoc ; 1(4): e79, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33836122

ABSTRACT

The generation of radiation chimeras allows researchers to substitute the hematopoietic system of a mouse with that of one or more donors. A suspension of hematopoietic stem cells (HSCs) is prepared from the bone marrow (BM) or the fetal liver (FL) of a donor mouse and adoptively transferred into an irradiated recipient. Within days, the donor's HSCs will engraft, and their progeny will quickly replace the blood cells of the recipient. This simple tool, together with the large availability of genetically modified mouse lines, can be harnessed to manipulate and study various aspects of blood cell biology in vivo. We present here protocols to generate three types of radiation chimera: (1) BM chimeras, which can assist in determining whether the origin of a genetically based phenotype is the hematopoietic or radio-resistant compartment and which are also conducive for studying the ecology of blood cells and for manipulating the environment hematopoietic cells live; (2) FL chimeras, which allow the study of hematopoietic systems from animals that carry genetic modifications incompatible with postnatal life; and (3) mixed BM chimeras, in which the hematopoietic system comprises blood cells of two different genotypes. Mixed BM chimeras can be used to identify genes that affect hematopoietic cell fitness and to establish whether secreted factors mediate a phenotype of interest. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Generation of bone marrow chimera Basic Protocol 2: Generation of fetal liver chimera Basic Protocol 3: Generation of mixed bone marrow chimera Support Protocol 1: Isolation of bone marrow cells Support Protocol 2: Cell counting by flow cytometry Support Protocol 3: Assessment of chimerism.


Subject(s)
Bone Marrow , Chimera , Animals , Hematopoietic Stem Cells , Liver , Mice , Radiation Chimera
16.
Arterioscler Thromb Vasc Biol ; 41(3): 1167-1178, 2021 03.
Article in English | MEDLINE | ID: mdl-33441028

ABSTRACT

OBJECTIVE: People with diabetes are at a significantly higher risk of cardiovascular disease, in part, due to accelerated atherosclerosis. Diabetic subjects have increased number of platelets that are activated, more reactive, and respond suboptimally to antiplatelet therapies. We hypothesized that reducing platelet numbers by inducing their premature apoptotic death would decrease atherosclerosis. Approach and Results: This was achieved by targeting the antiapoptotic protein Bcl-xL (B-cell lymphoma-extra large; which is essential for platelet viability) via distinct genetic and pharmacological approaches. In the former, we transplanted bone marrow from mice carrying the Tyr15 to Cys loss of function allele of Bcl-x (known as Bcl-xPlt20) or wild-type littermate controls into atherosclerotic-prone Ldlr+/- mice made diabetic with streptozotocin and fed a Western diet. Reduced Bcl-xL function in hematopoietic cells significantly decreased platelet numbers, exclusive of other hematologic changes. This led to a significant reduction in atherosclerotic lesion formation in Bcl-xPlt20 bone marrow transplanted Ldlr+/- mice. To assess the potential therapeutic relevance of reducing platelets in atherosclerosis, we next targeted Bcl-xL with a pharmacological strategy. This was achieved by low-dose administration of the BH3 (B-cell lymphoma-2 homology domain 3) mimetic, ABT-737 triweekly, in diabetic Apoe-/- mice for the final 6 weeks of a 12-week study. ABT-737 normalized platelet numbers along with platelet and leukocyte activation to that of nondiabetic controls, significantly reducing atherosclerosis while promoting a more stable plaque phenotype. CONCLUSIONS: These studies suggest that selectively reducing circulating platelets, by targeting Bcl-xL to promote platelet apoptosis, can reduce atherosclerosis and lower cardiovascular disease risk in diabetes. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Atherosclerosis/blood , Atherosclerosis/complications , Blood Platelets/pathology , Diabetic Angiopathies/blood , Animals , Apoptosis/drug effects , Apoptosis/genetics , Atherosclerosis/prevention & control , Biphenyl Compounds/administration & dosage , Blood Platelets/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Female , Humans , Leukocytes/pathology , Leukocytes/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitrophenols/administration & dosage , Piperazines/administration & dosage , Platelet Count , Receptors, LDL/deficiency , Receptors, LDL/genetics , Risk Factors , Sulfonamides/administration & dosage
17.
Cell Death Discov ; 6(1): 98, 2020.
Article in English | MEDLINE | ID: mdl-33083019
18.
J Thromb Haemost ; 18(11): 3067-3073, 2020 11.
Article in English | MEDLINE | ID: mdl-32945081

ABSTRACT

BACKGROUND: Emerging evidence implicates dysfunctional platelet responses in thrombotic complications in COVID-19 patients. Platelets are important players in inflammation-induced thrombosis. In particular, procoagulant platelets support thrombin generation and mediate thromboinflammation. OBJECTIVES: To examine if procoagulant platelet formation is altered in COVID-19 patients and if procoagulant platelets contribute to pulmonary thrombosis. PATIENTS/METHODS: Healthy donors and COVID-19 patients were recruited from the University of Utah Hospital System. Platelets were isolated and procoagulant platelet formation measured by annexin V binding as well as mitochondrial function were examined. We utilized mice lacking the ability to form procoagulant platelets (CypDplt-/- ) to examine the role of procoagulant platelets in pulmonary thrombosis. RESULTS AND CONCLUSIONS: We observed that platelets isolated from COVID-19 patients had a reduced ability to become procoagulant compared to those from matched healthy donors, as evidenced by reduced mitochondrial depolarization and phosphatidylserine exposure following dual stimulation with thrombin and convulxin. To understand what impact reduced procoagulant platelet responses might have in vivo, we subjected mice with a platelet-specific deletion of cyclophilin D, which are deficient in procoagulant platelet formation, to a model of pulmonary microvascular thrombosis. Mice with platelets lacking cyclophilin D died significantly faster from pulmonary microvascular thrombosis compared to littermate wild-type controls. These results suggest dysregulated procoagulant platelet responses may contribute to thrombotic complications during SARS-CoV-2 infection.


Subject(s)
Blood Coagulation , Blood Platelets/metabolism , COVID-19/complications , Platelet Activation , Thrombosis/etiology , Adult , Aged , Animals , COVID-19/blood , COVID-19/diagnosis , Case-Control Studies , Peptidyl-Prolyl Isomerase F/blood , Peptidyl-Prolyl Isomerase F/genetics , Disease Models, Animal , Female , Humans , Male , Mice, Knockout , Middle Aged , Thrombosis/blood , Thrombosis/diagnosis
19.
Nat Microbiol ; 5(11): 1418-1427, 2020 11.
Article in English | MEDLINE | ID: mdl-32807891

ABSTRACT

Sensing of microbes activates the innate immune system, depending on functional mitochondria. However, pathogenic bacteria inhibit mitochondrial activity by delivering toxins via outer membrane vesicles (OMVs). How macrophages respond to pathogenic microbes that target mitochondria remains unclear. Here, we show that macrophages exposed to OMVs from Neisseria gonorrhoeae, uropathogenic Escherichia coli and Pseudomonas aeruginosa induce mitochondrial apoptosis and NLRP3 inflammasome activation. OMVs and toxins that cause mitochondrial dysfunction trigger inhibition of host protein synthesis, which depletes the unstable BCL-2 family member MCL-1 and induces BAK-dependent mitochondrial apoptosis. In parallel with caspase-11-mediated pyroptosis, mitochondrial apoptosis and potassium ion efflux activate the NLRP3 inflammasome after OMV exposure in vitro. Importantly, in the in vivo setting, the activation and release of interleukin-1ß in response to N. gonorrhoeae OMVs is regulated by mitochondrial apoptosis. Our data highlight how innate immune cells sense infections by monitoring mitochondrial health.


Subject(s)
Apoptosis , Bacterial Outer Membrane/metabolism , Gram-Negative Bacteria/metabolism , Mitochondria/pathology , Animals , Extracellular Vesicles , Gram-Negative Bacteria/pathogenicity , Gram-Negative Bacterial Infections/immunology , Inflammation , Interleukin-1beta/metabolism , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Protein Biosynthesis , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
20.
Blood ; 136(8): 957-973, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32369597

ABSTRACT

Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.


Subject(s)
Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Histone Demethylases/metabolism , Leukemia, Myeloid, Acute/pathology , Snail Family Transcription Factors/physiology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , HEK293 Cells , HL-60 Cells , Histone Demethylases/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Transgenic , Protein Binding , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...